

Current vegetated filter strip research, design, and implementation Challenges and shortcomings

Federal Agency for Water Management Section Watershed Hydrology and Erosion

D. Ramler, E. Schmaltz & P. Strauss

European

Commission

What is the problem?

Effectivity of nutrient retention highly variable:

Hoffmann et al. 2009

Pollutant	Min %	Max %
TP	32	93
DRP	-71	95

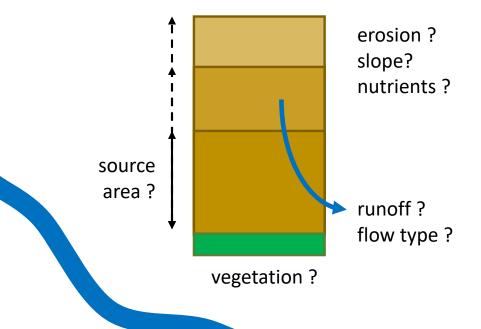
STUTTER et al. 2021

Pollutant	Min %	Max %
TP	-55	98
DP	-375	100
Sediment	-36	100
Nitrate	-1650	100

What is causing the problem?

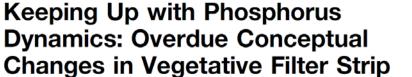
VFS research / monitoring with (over-) simplified approaches

- flow convergence not considered
- subsurface soil not considered
- (long term) temporal aspects not considered
 - > nutrient saturation


State-of-the-art research not effectively communicated

Buffer strips in ÖPUL



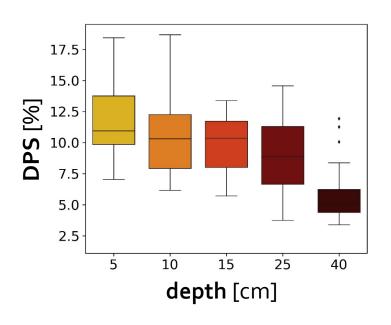


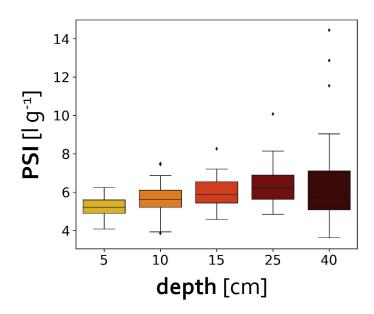
This presentation

- illustrate problem
- present solutions / points for discussion
- focus on P

Research and Management

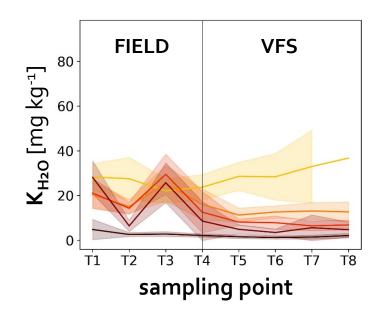
David Ramler^{1,2}*, Marc Stutter^{3,4}, Gabriele Weigelhofer^{2,5}, John N. Quinton⁴, Rebecca Hood-Nowotny⁶ and Peter Strauss¹

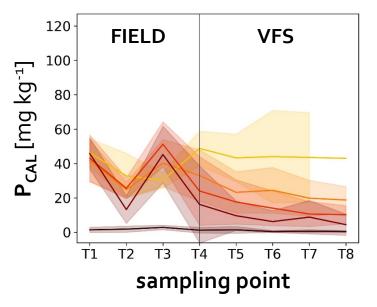




European

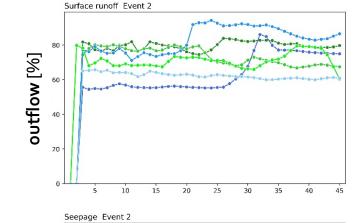
Commission

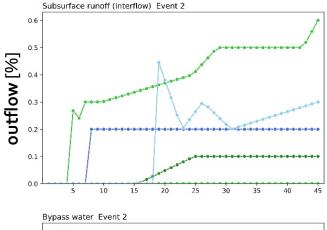


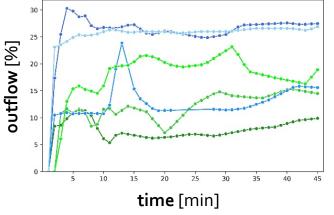


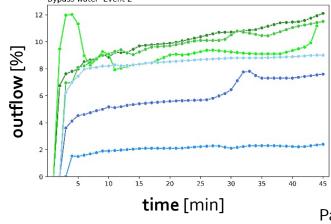
RAMLER et al. in prep

RAMLER et al. in prep


- undisturbed soil monoliths
- artificial runoff experiments
 - surface runoff
 - subsurface interflow
 - percolating water
 - bypass water

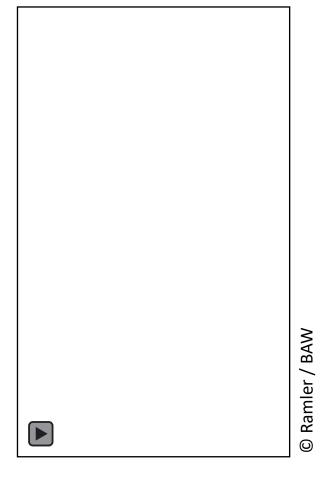

© Ramler / BAW


surface runoff [55-95 %]


subsurface interflow [<1%]

percolating water [5-30 %]

bypass water [2-12 %]


RAMLER et al. in prep

fast onset of percolating and bypass water

- high share of macropores
- preferential flow
- → earthworm channels

Is this good or bad?

- synopsis

- soils are three-dimensional entities
- subsoils with high potential for nutrient uptake
- infiltration vs. preferential flow

Simplified approach with only few factors considered

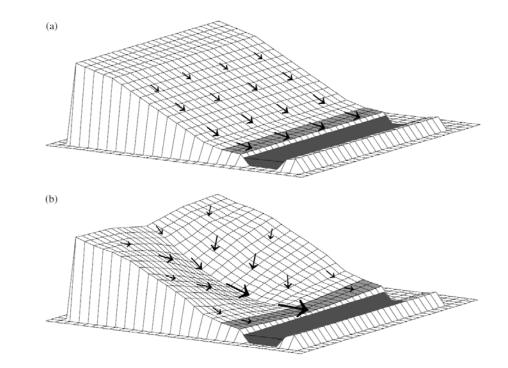
- · only width considered
- width fixed

• only surface runoff considered

Holistic consideration of contributing factors

- whole **soil volume** considered, **3D** view
- width adjusted to local conditions

surface, subsurface, and preferential flow pathways considered


RAMLER et al. 2022

Sheet flow vs. concentrated flow

- Flow convergence in field
 thalweg | rill erosion | gullies
- Flow convergence at field edge microtopography | barriers

Verstraeten et al. 2006

- sheet flow

© Ramler / BAW

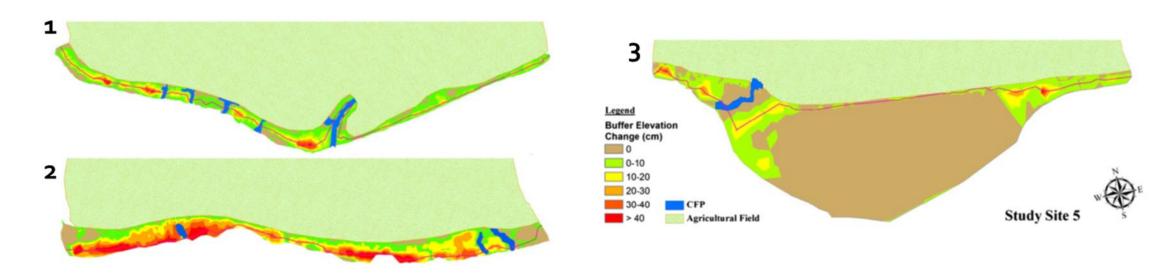
- thalweg

© Ramler / BAW

- plough shares

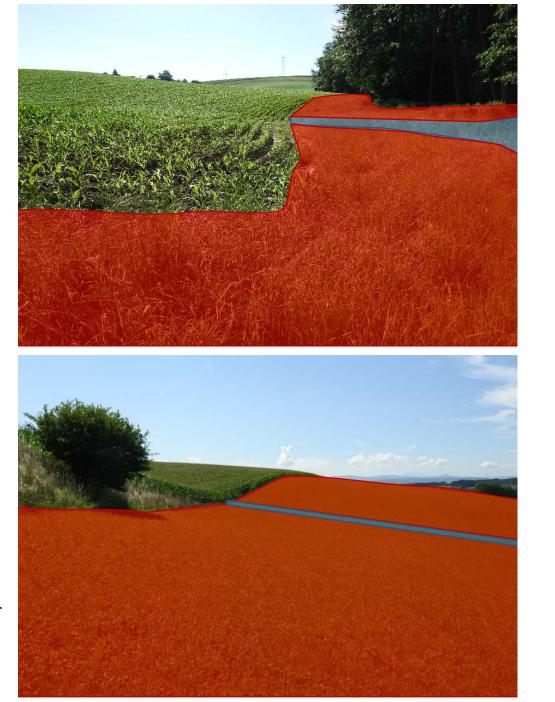
© Ramler / BAW Page 16

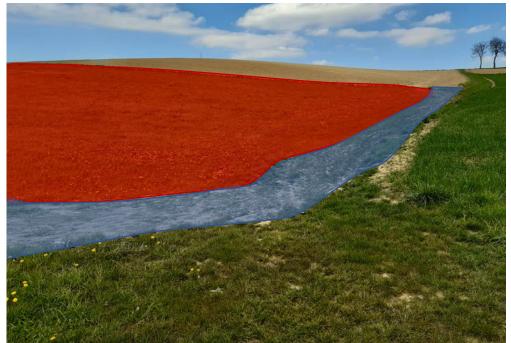
topography


© Ramler / BAW

ONLINE WORKSHOP ON

- in the buffer


Pankau et al. 2012 Page 18



- synopsis

- reduces effective area / volume
- severely limits buffer effectivity
- needs more flexible buffer design & positioning

Simplified approach with only few factors considered

Holistic consideration of contributing factors

fixed VFS shape

• VFS shape adjusted to runoff conditions

RAMLER et al. 2022

C) Other issues

Simplified approach with only few factors considered

• only duration of rainfall considered

• same conditions assumed year-round

• one-type-fits-all approach

VFS viewed in isolation

Holistic consideration of contributing factors

• duration and return frequency of rainfall considered

• seasonal effects and constraints considered

• mathematical models used for risk assessment and corresponding VFS design

- VFS viewed in **geospatial context**
- landscape position of VFS considered

RAMLER et al. 2022

What is needed?

Balance of inputs and outputs

```
amount of incoming P

weather | tillage | cropping | fertilization | ...
```

- ≤ amount of P that can be temporarily retained

 effective area/volume | infiltration | soil type | ...
- + amount of P that can be removed (via harvesting)

 vegetation type | species | mowing frequency | ...

What should be done?

Balance of inputs and outputs

Amount of incoming P

better assessment of nutrient export potential

```
source area | fertilization | slope | soil texture | ...
```

- encourage & support in-field measures
 - reduce fertilization (nutrient pool)
 - minimize erosion risk

ONLINE WORKSHOP ON

What should be done?

Balance of inputs and outputs

Amount of P that can be temporarily retained

- maximize contact time
- maximize contact area
- maximize contact volume
 - grass barriers

- → re-distributes runoff
- selected vegetation
- → promotes infiltration
- sufficient extent
- → adapted to nutrient export risk
- optimal placement
- → adapted to local conditions

What should be done?

Balance of inputs and outputs

Amount of P that can be removed via harvesting

- optimal vegetation / species composition
- optimal mowing frequency
- management is mandatory
- other ESS

SCIENCE

→ more sophisticated and holistic **scientific evaluation** of buffers

SCIENCE | POLICY

- > improved **understanding** of processes and contributing factors
- → improved **communication**

POLICY | FUNDING AGENCIES

→ clear, specific, and bespoke buffer **design recommendations**

PRACTITIONERS

→ long-lasting, **effective buffers**

Thank your for your attention!

Federal Agency for Water Management Section Watershed Hydrology and Erosion

David Ramler, PhD

Federal Agency for Water Management Institute for Land and Water Management Research www.baw.at/wasser-boden.at david.ramler@baw.at

References

- Hoffmann, C. C., Kjaergaard, C., Uusi-Kämppä, J., Hansen, H. C. B., and Kronvang, B. (2009).
 Phosphorus Retention in Riparian Buffers: Review of Their Efficiency. *J. Environ. Qual.* 38, 1942–1955.
 doi:10.2134/jeq2008.0087.
- Pankau, R. C., Schoonover, J. E., Williard, K. W. J., and Edwards, P. J. (2012). Concentrated flow paths in riparian buffer zones of southern Illinois. *Agrofor. Syst.* 84, 191–205. doi:10.1007/s10457-011-9457-5.
- Ramler, D., Stutter, M., Weigelhofer, G., Quinton, J. N., Hood-Nowotny, R., and Strauss, P. (2022).
 Keeping Up with Phosphorus Dynamics: Overdue Conceptual Changes in Vegetative Filter Strip Research and Management. Front. Environ. Sci. 10. Available at: https://www.frontiersin.org/article/10.3389/fenvs.2022.764333.
- Stutter, M., Costa, F. B., and Ó hUallacháin, D. (2021). The interactions of site-specific factors on riparian buffer effectiveness across multiple pollutants: A review. *Sci. Total Environ.* 798, 149238. doi:https://doi.org/10.1016/j.scitotenv.2021.149238.
- Verstraeten, G., Poesen, J., Gillijns, K., and Govers, G. (2006). The use of riparian vegetated filter strips to reduce river sediment loads: an overestimated control measure? *Hydrol. Process.* 20, 4259–4267. doi:https://doi.org/10.1002/hyp.6155.